Numerical Simulation of the Overrolling of a Surface Feature in an EHL Line Contact

Author:

Venner C. H.1,Lubrecht A. A.2,ten Napel W. E.1

Affiliation:

1. University of Twente, Enschede, The Netherlands

2. SKF Engineering & Research Centre B.V., Nieuwegein, The Netherlands

Abstract

In this paper a Multigrid extension of a stationary solver is outlined for the EHL solution of a line contact under transient conditions. The solver is applied to calculate pressure and film thickness profiles at each time step when an indentation is moving through the contact, which results in an asymmetric pressure profile. The time-dependent results are compared with the stationary solutions. The pressure as a function of time is presented as well as the integrated pressure (over time) as a function of the spatial coordinate. These time-dependent pressures are used to compute the sub-surface stress field, which shows higher stresses below the trailing edge of the indentation. Therefore the risk of fatigue is higher below the trailing edge of the indentation, as is experimentally observed. The transient pressures can be used for a fundamental study of the emitted frequency spectrum of rolling bearings, as used in condition monitoring.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3