Resilient Circularity in Manufacturing: Synergies Between Circular Economy and Reconfigurable Manufacturing

Author:

Hassan Hadear1,Bushagour Amira11,Layton Astrid1

Affiliation:

1. Texas A&M University J. Mike Walker ‘66 Department of Mechanical Engineering, , College Station, TX 77843

Abstract

Abstract Reconfigurability in manufacturing signifies a system's capacity to promptly adapt to evolving needs. This adaptability is critical for markets to maintain operations during unexpected disruptions, including weather anomalies, cyber-attacks, and physical obstructions. Concurrently, the concept of a circular economy is gaining popularity in manufacturing to mitigate waste and optimize resource utilization. Circular economy principles aim to reduce environmental impacts while maximizing economic benefits by emphasizing the reuse of goods and resource byproducts. The nexus between reconfigurability and the circular economy stems from their shared pursuit of sustainability and resilience. Interestingly, biological ecosystems also exhibit these traits, showcasing exceptional adaptability to disturbances alongside the ability to effectively utilize available resources during normal operations. This study explores various manufacturing system configurations to assess both their adaptability and connection to circular economy principles. Forty-four configurations are categorized based on layout (e.g., job shop, flow line, cellular) and analyzed using convertibility, cyclicity, and degree of system order metrics. A significant positive correlation (R2 = 0.655) is found between high convertibility and ecologically similar levels of structural cycling, suggesting that effective resource utilization supports adaptability in manufacturing systems. Furthermore, this paper proposes the existence of a possible “window of vitality” for cyclicity, as it demonstrates a significant correlation (R2 = 0.855) between the degree of system order and cyclicity. Identifying systems that strike a balance between redundancy, efficiency, convertibility, and cyclicity can aid manufacturing system designers and decision-makers in making choices that address increasing requirements for both sustainability and resilience.

Publisher

ASME International

Reference71 articles.

1. The Future of Manufacturing: A New Perspective;Wang;Engineering,2018

2. Quantifying the Sustainability and Robustness of Manufacturing Systems Using Energy and Ecological Network Analyses;Hassan,2023

3. Reconfigurability and Reconfigurable Manufacturing Systems: State-of-the-Art Review;Setchi,2004

4. Evolution and Future of Manufacturing Systems;ElMaraghy;CIRP Ann.,2021

5. Challenges, Opportunities and Future Directions of Smart Manufacturing: A State of Art Review;Phuyal;Sustain. Futures,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3