Microstructural Evolution During Long Term Creep Tests of 9%Cr Steel Grades

Author:

Cipolla Leonardo1,Di Gianfrancesco Augusto1,Venditti Dario1,Cumino Giuseppe2,Caminada Stefano2

Affiliation:

1. Centro Sviluppo Materiali SpA, Rome, Italy

2. TenarisDalmine, Dalmine, Italy

Abstract

In the last two decades the service pressure and temperature of components for advanced power plants increased significantly and more severe requirements on strength, corrosion resistance and creep properties were imposed on high temperature steels. To comply with these requirements, several new 9–12%Cr martensitic steels were developed and some of them, such as ASTM Grades 91, 911 and 92 are currently used in new high efficiency Ultra Super Critical power plants. The initial evaluation of their creep strength above 550°C was defined with relatively short term tests, but the long experience in service and long term creep laboratory tests showed that the original estimation of creep strength values were not reliable and a reduction of the creep resistance occurred at long service time. Short creep tests (elaborated with time-temperature-parameter methods, i.e. Larson Miller equation) usually give an over-estimation of the long-term creep properties of 9%Cr steels. The results of the creep assessments of Grade 92 (Japanese NF616) are an example of the significant lowering of the creep properties: the creep resistance of this grade was initially evaluated in 600°C/160MPa/105h by means extrapolation of short creep tests, within 103 hours; recently the creep strength was reduced down to 113MPa (ECCC assessment, 2005). Moreover some premature failures of Japanese Grade PI 22 took place and similar problems appeared on other 12%Cr steels. The lowering of creep strength in 9–12%Cr steels at long times is a consequence of the evolution of their microstructure during high temperature service. The causes of this phenomenon in Grades 91, 911 and 92 are examined in this article, paying special attention to the metallurgical explanation. The most evident changes in the microstructure of 9%Cr steels occur with the nucleation of Laves-phase as well as the nucleation of Z-phase at longer times. The precipitation of Laves phase has two relevant aspects by the creep strength point of view. On one hand, high amounts of Mo and W contents are incorporated in this phase, causing a depletion of these elements from the solid solution and thus a reduction of their contribution to the overall creep resistance. On the other hand, the increased volume fraction of secondary phases leads to a higher precipitation strengthening during the first precipitation phase: at the beginning, the precipitation of fine Laves phase increases the creep resistance; however if the coarsening rate is not taken under control, the mean diameter of these particles reaches micrometric dimensions with a detrimental effect on creep behaviour within 103 hours in the range 600°C–650°C. The high coarsening rate of Laves phase is therefore the major cause of the lowering of creep properties of Grades 91, 911 and 92. Coarsening of Laves phase particles over a critical size triggers the cavity formation and the consequent brittle intergranular fracture. Transition from ductile fracture to brittle intergranular fracture often occurs in long-term creep at the onset of coarsening of Laves particles, which result to be the preferential site for cavities nucleation in the 9%Cr steels. Z-phase was recognized in 9%Cr steels after long term exposure, but in far smaller amount than on 12%Cr steels: no dramatic drop in volume fraction of MX was observed in association to the nucleation of this phase, therefore it is believed that the modified Z-phase does not affect significantly the long term creep properties of Grades 91, 911 and 92. The dimple pattern is typical of ductile fracture, which occurs for short service period (hence highest stress). At low stresses, cavities are formed at the triple grain junctions at which Laves particles are often found, causing wedge crack, otherwise isolated cavities can form independently at coarse Laves phase particles (Figure 13). The latter type is often observed after long-term creep in the interganular fracture region. In both cases, brittle fracture occurs at the onset of coarsening of Laves particles, which result to be the preferential site for cavities nucleation in the 9%Cr steels.

Publisher

ASMEDC

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3