Variable Physical Properties in Natural Convective Gas Microflow

Author:

Weng Huei Chu1,Chen Cha’o-Kuang1

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan, R.O.C

Abstract

Anisothermal flow prevails in a heated microchannel. It is desirable to understand the influence of temperature-dependent physical properties on the flow and heat transfer characteristics for natural convective gas microflow. In this study, formulas for the shear viscosity, thermal conductivity, constant-pressure specific heat, density, and molecular mean free path are proposed in power-law form and validated through experimental data. Natural convective gas flow with variable physical properties in a long open-ended vertical parallel-plate microchannel with asymmetric wall temperature distributions is further investigated. The full Navier–Stokes equations and energy equation combined with the first-order slip∕jump boundary conditions are employed. Analysis process shows that the compressibility and viscous dissipation terms in balance equations are negligible. Numerical solutions are presented for air at the standard reference state with complete accommodation. It is found that the effect of variable properties should be considered for hotter-wall temperatures greater than 306.88K. The effect is to advance the velocity slip and temperature jump as well as the velocity symmetry and temperature nonlinearity. Moreover, it tends to reduce the mass flow rate and the local heat transfer rate excluding on the cooler-wall surface where the temperature-jump effect prevails over the temperature-nonlinearity effect. Increasing the cooler-wall temperature magnifies the effect on flow behavior but minifies that on thermal behavior.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3