Stability and Robustness Analysis of Uncertain Nonlinear Systems Using Entropy Properties of Left and Right Singular Vectors

Author:

Kap Son Young1,Savage Gordon J.2

Affiliation:

1. Department of Mechanical and Automotive Engineering, Andong National University, 1375 Gyeongdong-ro, Andong-si, Gyeongsangbuk-do 36729, South Korea e-mail:

2. Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada e-mail:

Abstract

This paper presents a novel approach to determine the stability space of nonlinear, uncertain dynamic systems that obviates the traditional eigenvalue approach and the accompanying linearizing approximations. In the new method, any long-term dynamic uncertainty is used in an extremely simple and economical way. First, the variability of the design variables about a particular design point is captured through the design of experiments (DOE). Then, corresponding computer simulations of the mechanistic model, over only a small time span, provide a matrix of discrete time responses. Finally, singular value decomposition (SVD) separates out parameter and time information and the expected uncertainty of the first few left and right singular vectors predicts any instability that might occur over the entire life-time of the dynamics. The singular vectors are viewed as random variables and their entropy leads to a simple metric that accurately predicts stability. The stable/unstable spaces are found by investigating the overall design space using an array of grid points of suitable spacing. The length of the time span needed to capture the nature of the dynamics can be as short as two or three periods. The robustness of the stability space is related to the tolerances assigned to the design variables. Errors due to sampling size, time increments, and number of significant singular vectors are controllable. The method can be implemented with readily available software. A study of two practical engineering systems with different distributions and tolerances, various initial conditions, and different time spans shows the efficacy of the proposed approach.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3