Experimental Analysis of Bubble Behavior and Critical Heat Flux During Pool Boiling on Vertical Circular Tubes

Author:

Pattanayak Bikash1,Kothadia Hardik B.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Jodhpur , Jodhpur 342037, Rajasthan

Abstract

Abstract The heat transfer during pool boiling incorporates a higher rate of heat dissipation capability at low-temperature differences. This technique is widely used in the nuclear industry for thermal management. In this study, the effect of tube diameter and length on critical heat flux (CHat atmospheric conditions in saturated water during pool boiling) is analyzed. The tubes of SS 304 are kept in the vertical orientation. The diameter of the tubes ranges from 1.2 mm to 9 mm. The experiments are performed with tubes having lengths varying from 50 mm to 1000 mm. It has been noted that tubes of smaller diameter show a greater magnitude of critical heat flux (CHF) for the given length. Compared to other tubes, the magnitude of CHF for a 1.2 mm diameter is higher. For a given diameter, a longer tube is found to have lower CHF than the ones having lesser length. The variation in the CHF magnitude is negligible for tubes with a diameter of more than 2.5 mm beyond a length of 200 mm. The location of occurrence of CHF is near the bottom end of the vertical tube. The study illustrates the behavior of bubble nucleation for various tube dimensions and heat fluxes. The inception and detachment of bubbles for different tubes are analyzed. The pool boiling regime is categorized and studied basing the behavior of the incepted and departed bubble while maintaining uniform heat flux. A mathematical relation that empirically accounts for the effect of tube dimensions , i.e., length and diameter on pool boiling CHF is proposed. The experimental CHF data obtained during pool boiling are tabulated toward contributing to the CHF databank.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference47 articles.

1. High Temperature Heat Exchangers for Power Plants: Performance of Advanced Metallic Recuperators;Appl. Therm. Eng.,2007

2. Comparative Analysis of Compact Heat Exchangers for Application as the Intermediate Heat Exchanger for Advanced Nuclear Reactors;Ann. Nucl. Energy,2015

3. Design Option of Heat Exchanger for the Next Generation Nuclear Plant;ASME J. Eng. Gas Turbines Power,2009

4. Experimental Investigation of the Transient Pool Boiling Heat Transfer on the Quenching of Vertical Rodlet in Water;ASME J. Nucl. Rad Sci.,2021

5. Experimental Evaluation of Critical Heat Flux in Downward-Facing Boiling on SS304 L Flat Plate Relevant to in-Calandria Retention in PHWRs;ASME J. Nucl. Rad. Sci.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3