Design and Experimental Verification of Position-Dependent Passive Electromagnetic Damping

Author:

Arif Aksekili Asil1,Topaloglu Nezih1

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, Yeditepe University, Istanbul 34755, Turkey e-mail:

Abstract

A linear dashpot is a common equipment used in shock and vibration isolation. It has been shown theoretically that the vibration isolation performance can be significantly improved by a damping profile that depends on the piston relative position. In this study, a position-dependent damping profile is realized by using electromagnetic principles. The idea is to have multiple coil windings on the outer cylinder and to use a magnet as a piston. The damping profile is tuned by changing the number of turns at each coil. As a result of the magnet-coil arrangement, the architecture also has the capability of being regenerative. A unique experimental setup is constructed that measures damping electrically in a multiple coil arrangement. Least-squares optimization method is used to tune the number of turns. It is shown that the coil turns can be successfully tailored to realize a desired damping profile. The position-dependent damping architecture has the potential to be used in future regenerative dampers.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tubular linear permanent magnet synchronous machine applied to semi-active suspension systems;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2018-09-17

2. Design and analysis of switchable magnetic polarity bistable energy harvester;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2018-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3