Affiliation:
1. Mem. ASME Department of Mechanical Engineering, Yeditepe University, Istanbul 34755, Turkey e-mail:
Abstract
A linear dashpot is a common equipment used in shock and vibration isolation. It has been shown theoretically that the vibration isolation performance can be significantly improved by a damping profile that depends on the piston relative position. In this study, a position-dependent damping profile is realized by using electromagnetic principles. The idea is to have multiple coil windings on the outer cylinder and to use a magnet as a piston. The damping profile is tuned by changing the number of turns at each coil. As a result of the magnet-coil arrangement, the architecture also has the capability of being regenerative. A unique experimental setup is constructed that measures damping electrically in a multiple coil arrangement. Least-squares optimization method is used to tune the number of turns. It is shown that the coil turns can be successfully tailored to realize a desired damping profile. The position-dependent damping architecture has the potential to be used in future regenerative dampers.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tubular linear permanent magnet synchronous machine applied to semi-active suspension systems;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2018-09-17
2. Design and analysis of switchable magnetic polarity bistable energy harvester;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2018-09-15