Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater

Author:

Kalghatgi Prasad1,Acharya Sumanta1

Affiliation:

1. Department of Mechanical Engineering, Center for Turbine Innovation and Energy Research, Louisiana State University, Baton Rouge, LA 70803 e-mail:

Abstract

Studies of film cooling holes embedded in craters and trenches have shown significant improvements in the film cooling performance. In this paper, a new design of a round film cooling hole embedded in a contoured crater is proposed for improved film cooling effectiveness over existing crater designs. The proposed design of the contour aims to generate a pair of vortices that counter and diminish the near-field development of the main kidney-pair vortex generated by the film cooling jet. With a weakened kidney-pair vortex, the coolant jet is expected to stay closer to the wall, reduce mixing, and therefore increase cooling effectiveness. In the present study, the performance of the proposed contoured crater design is evaluated for depth between 0.2D and 0.75D. A round film cooling hole with a 35 deg inclined short delivery tube (l/D = 1.75), freestream Reynolds number ReD = 16,000, and density ratio of coolant to freestream fluid ρj/ρ∞ = 2.0 is used as the baseline case. Hydrodynamic and thermal fields for all cases are investigated numerically using large eddy simulation (LES) technique. The baseline case results are validated with published experimental data. The performance of the new crater design for various crater depths and blowing ratios are compared with the baseline case. Results are also compared with other reported crater designs with similar flow conditions and crater depth. Performance improvement in cooling effectiveness of over 100% of the corresponding baseline case is observed for the contoured crater.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3