Peri-Ultrasound Modeling to Investigate the Performance of Different Nonlinear Ultrasonic Techniques for Damage Monitoring in Plate Structures

Author:

Zhang Guangdong12,Li Xiongbing3,Kundu Tribikram45

Affiliation:

1. Central South University School of Traffic and Transportation Engineering, , Changsha, Hunan 410075 , China ;

2. University of Arizona Department of Civil and Architectural Engineering and Mechanics, , Tucson, AZ 85721

3. Central South University School of Traffic and Transportation Engineering, , Changsha, Hunan 410075 , China

4. University of Arizona Department of Civil and Architectural Engineering and Mechanics, , Tucson, AZ 85721 ;

5. University of Arizona Department of Aerospace and Mechanical Engineering, , Tucson, AZ 85721

Abstract

Abstract Peri-ultrasound modeling which is based on nonlocal peridynamics is found and proven to be effective for modeling nonlinear waves propagating and interacting with damages in structures. This work presents the peri-ultrasound modeling to investigate the performance of three commonly used nonlinear ultrasonic (NLU) techniques—wave mixing, higher harmonic generation (HHG), and sideband peak count-index (or SPC-I) for monitoring damages (or cracks) in three-dimensional (3D) plate structures. Cracks can be defined as “thin cracks” and “thick cracks” according to the horizon size mentioned in peridynamics. Peri-ultrasound modeling results reveal that the SPC-I results are consistent with other reported numerical modeling and experimental results available in the literature. However, the modulation indicator (MI) from the wave mixing model only shows consistent trends for thin cracks but not for thick cracks and its reliability is affected by the initial excitation bandwidth. The relative acoustic nonlinearity factor β from the HHG technique shows consistent trends for thick cracks but not for thin cracks. It can be concluded from the obtained parametric analysis results that the SPC-I technique is more robust and reliable for monitoring damages in engineering structures.

Funder

Central South University

Natural Science Foundation of Hunan Province

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3