Combined Conduction, Natural Convection, and Radiation Heat Transfer in an Electronic Chassis

Author:

Smith T. F.1,Beckermann C.1,Weber S. W.2

Affiliation:

1. Department of Mechanical Engineering, The University of Iowa, Iowa City, Iowa 52242

2. Systems Engineering and Analysis, Collins Defense Communications, Rockwell International Corporation, Cedar Rapids, Iowa 52498

Abstract

A numerical study of the combined heat transfer by conduction, natural convection, and radiation in a sealed electronic package is reported. The goal of the study is to investigate the importance of the various heat transfer modes, the effectiveness of different heat transfer paths, and the impact of a number of design changes on the overall thermal performance of a typical electronic package. The package consists of an enclosure containing three printed circuit boards on which are mounted various heat-generating electronic components. Heat transfer processes at both small (i.e., inside a component) and large (i.e., the package) scales as well as all heat transfer modes are included simultaneously in the numerical model. Both one and two-dimensional radiation is considered. Results are presented in terms of streamline and isotherm plots and average temperatures and heat transfer rates. Overall, the numerical data show favorable agreement with available empirical data. One significant conclusion is that natural convection inside the enclosure has only a minor effect on the heat transfer in the present system.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3