Real-Time Dynamic Simulations of Large Road Vehicles Using Dense, Sparse, and Parallelization Techniques

Author:

Hidalgo Andrés F.1,García de Jalón Javier2

Affiliation:

1. INSIA, Technical University of Madrid (UPM), Campus Sur UPM, Ctra. Valencia km 7, Madrid 28031, Spain e-mail: ;

2. ETSII and INSIA, Technical University of Madrid (UPM), José Gutiérrez Abascal 2, Madrid 28006, Spain e-mail:

Abstract

This article presents three multibody formulations with improved efficiency in order to achieve real-time simulations for the forward dynamic of two real-life road vehicles. The bigger is a semitrailer truck with 40 degrees of freedom (DOF). Two topological and semirecursive formulations are used as well as a global formulation based on the use of Euler parameters and flexible joints. The first semirecursive formulation carries out a double velocity transformation and the integration is done by means of the explicit fourth order Runge–Kutta method. The second semirecursive formulation and the global one use a penalty scheme at position level and orthogonal projections at velocity and acceleration levels. In both cases the integrator was the implicit Hilbert–Huges–Taylor (HHT) method. The double velocity transformation method involves the coordinate partitioning of the constraint Jacobian matrix which leads to the costly solution of a redundant but consistent with the constraints linear system of equations. The choice of a unique set of independent coordinates may not be valid for a complete simulation and additional repartitioning would be required. Based on previous experience and as the examples show in this article, a careful initial choice of the independent coordinates can remain valid for complete simulations involving common maneuvers. This represents a numerical advantage for dense matrix methods and can be further exploited if sparse matrix techniques are employed. This has been the case for both of the vehicles used, reaching real-time simulations even with the semitrailer truck. The implicit semirecursive formulation involves the numerical evaluation of the stiffness and damping matrices, which hamper obtaining real-time simulations. For the semitrailer truck, this computation represents the 76% of the total simulation time. The numerical computation of these matrices is carried out by columns and its algorithm is straightforwardly parallelizable. Using a quad-core processor and with a simple and efficient OpenMP implementation, it has been possible to achieve a speedup of 3.25 reducing the simulation times under the real-time limit. The sparse matrices of Euler parameters formulation show very different sparsity degrees, difference that grows with the size of the multibody model. This poses a challenge to sparse matrix implementations in order to be able to efficiently perform matrix operations without increasing fillings or handling zero entries. This has been successfully accomplished using a new sparse matrix representation. This one is not a feature of general purpose sparse software, requiring at some stages the implementation of our own algorithms. Reductions in time of three orders of magnitude have led to real-time simulations even with the semitrailer truck.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference48 articles.

1. Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems;ASME J. Comput. Nonlinear Dyn.,2008

2. Stabilization of Constraints and Integrals of Motion in Dynamical Systems;Comput. Methods Appl. Mech. Eng.,1972

3. Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics;Nonlinear Dyn.,1996

4. Numerical Methods for Constrained Equations of Motion in Mechanical System Dynamics;Mech. Struct. Mach.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3