A Three-Dimensional Deterministic Model for Rough Surface Line-Contact EHL Problems

Author:

Ren Ning1,Zhu Dong2,Chen W. Wayne1,Liu Yuchuan1,Wang Q. Jane1

Affiliation:

1. Center for Surface Engineering and Tribology, Northwestern University, Evanston, IL 60208

2. Tri-Tech Solutions, Mount Prospect, IL 60056

Abstract

This paper reports the development of a novel three-dimensional (3D) deterministic model (3D L-EHL) for rough surface line-contact mixed-elastohydrodynamic lubrication (EHL) problems. This model is highly demanded because line contacts are found between many mechanical components, such as various gears, roller and needle bearings, cams and followers, and work rolls and backup rolls in metal-forming equipment. The macro aspects of a line-contact problem can be simplified into a two-dimensional (2D) model; however, the topography of contacting rough surfaces, microasperity contacts, and lubricant flows around asperities are often three-dimensional. The present model is based on Hu and Zhu’s unified 3D mixed-EHL model (Hu and Zhu, 2000, “Full Numerical Solution to the Mixed Lubrication in Point Contacts,” ASME J. Tribol., 122(1), pp. 1–9) originally developed for point contacts and the mixed fast Fourier transform (FFT)-based approach for deformation calculation formulated by Chen et al. (2008, “Fast Fourier Transform Based Numerical Methods for Elasto-Plastic Contacts With Normally Flat Surface,” ASME J. Appl. Mech., 75(1), 011022-1-11). It is numerically verified through comparisons with results from the line-contact Hertzian theory and the conventional 2D line-contact smooth-surface EHL formulas. Numerical examples involving 3D sinusoidal and digitized machined surfaces are also analyzed. Sample cases indicate that transverse roughness may yield greater film thickness than longitudinal roughness. This observation is qualitatively in agreement with the trend predicted by Patir and Cheng’s stochastic model (1978, “Effect of Surface Roughness on the Central Film Thickness in EHL Contacts,” Proceedings of the Fifth Leeds-Lyon Symposium on Tribology, London, pp. 15–21). However, the roughness orientation effect does not appear to be quantitatively as great as that shown in the work of Patir and Cheng for the same range of λ ratio.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference21 articles.

1. Grubin, A. N. , 1949, “Contact Stress in Toothed Gears,” Central Scientific Research. Institute for Technology and Mechanical Engineering (Moscow), Book No. 30, D.S.I.R. Trans. No. 337.

2. New Roller Bearing Lubrication Formula;Dowson;Engineering (London)

3. Elastohydrodynamics;Dowson;Proc. Inst. Mech. Eng.

4. Wymer, D. G. , 1972, “EHD Lubrication of a Rolling Line Contact,” Ph.D. thesis, University of London, London.

5. A Central Film Thickness Formula for Elastohydrodynamic Line Contacts;Dowson

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3