Study on Lifted Flame Stabilization Under Different Background Pressures

Author:

Qin Qiushi1,Wu Zhijun1,Ferrari Alessandro2

Affiliation:

1. Tongji University, Shanghai 201804, China

2. Polytechnic University of Turin, Turin 10129, Italy

Abstract

Abstract A numerical experimental investigation is presented for a steady methane lifted flame and a nonreaction jet flow in a co-flow of hot combustion products from lean premixed air-hydrogen combustion. The main objective has been to analyze the dependence of methane jet flame stability on the background pressure: a pressurized vitiated co-flow burner (PVCB) has been used to study the methane lifted flame and nonreaction jet flow under different background pressures (1–1.5 bars). The lifted flame is characterized by a liftoff height, which has been measured with a high-speed camera, and a central jet flow defined by the jet velocity, which has been measured by means of a high-sensitivity Schlieren imaging system. The experimental results show that the liftoff height decreases for an increment in the background pressure (from 1 to 1.5 bar at 1073 K) and in the co-flow temperature (from 1058 K to 1118 K at 1 bar). The standard deviation of the liftoff height also reduces for an increase in either the background pressure or the co-flow temperature, which indicates that the liftoff height is more stable at higher background pressures and co-flow temperatures. As far as the experimental tests on the nonreaction jet flow is concerned, the jet velocity becomes extinct faster as the background pressure rises, which is consistent with the decrease in the liftoff height as the background pressure grows. The evolution of the jet velocity has been proved to be another important factor that affects the liftoff height under different background pressures (physical factor), in addition to the fuel autoignition delay (chemical factor). The simulation data led with a Reynolds-averaged Navier–Stokes (RANS)/probability density function (PDF) model show that an increment in the background pressure makes the temperatures increase and induces a brighter yellow part of lifted flame, which leads to more soot production. This proves that the flame is not completely premixed. On the other hand, the Schlieren images of the non-reaction jet flow highlight that the flame is partially premixed, since the edge of the jet is not well defined, as the jet penetration increases with time. The liftoff height values of the flame in the numerical simulations were found to be generally higher than those measured in the corresponding experiments. This discrepancy was caused by an appreciable radiation heat loss at the thermocouple. A correlation was therefore developed for the thermocouple temperature measurement in order to correct the inaccuracy.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3