A Linearized Theory on Ground-Based Vibration Response of Rotating Asymmetric Flexible Structures

Author:

Shen I. Y.1,Kim Hyunchul1

Affiliation:

1. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2600

Abstract

This paper is to develop a unified algorithm to predict vibration of spinning asymmetric rotors with arbitrary geometry and complexity. Specifically, the algorithm is to predict vibration response of spinning rotors from a ground-based observer. As a first approximation, the effects of housings and bearings are not included in this analysis. The unified algorithm consists of three steps. The first step is to conduct a finite element analysis on the corresponding stationary rotor to extract natural frequencies and mode shapes. The second step is to represent the vibration of the spinning rotor in terms of the mode shapes and their modal response in a coordinate system that is rotating with the spinning rotor. The equation of motion governing the modal response is derived through use of the Lagrange equation. To construct the equation of motion, explicitly, the results from the finite element analysis will be used to calculate the gyroscopic matrix, centrifugal stiffening (or softening) matrix, and generalized modal excitation vector. The third step is to solve the equation of motion to obtain the modal response, which, in turn, will lead to physical response of the rotor for a rotor-based observer or for a ground-based observer through a coordinate transformation. Results of the algorithm indicate that Campbell diagrams of spinning asymmetric rotors will not only have traditional forward and backward primary resonances as in axisymmetric rotors, but also have secondary resonances caused by higher harmonics resulting from the mode shapes. Finally, the algorithm is validated through a calibrated experiment using rotating disks with evenly spaced radial slots. Qualitatively, all measured vibration spectra show significant forward and backward primary resonances as well as secondary resonances as predicted in the theoretical analysis. Quantitatively, measured primary and secondary resonance frequencies agree extremely well with those predicted from the algorithm with mostly <3.5% difference.

Publisher

ASME International

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3