Effects of Low Uniform Relative Roughness on Single-Phase Friction Factors in Microchannels and Minichannels

Author:

Brackbill Timothy P.1,Kandlikar Satish G.1

Affiliation:

1. Rochester Institute of Technology, Rochester, NY

Abstract

Nikuradse’s [1] work on friction factors focused on the turbulent flow regime in addition to being performed in large diameter pipes. Laminar data was collected by Nikuradse, however only low relative roughness values were examined. A recent review by Kandlikar [2] showed that the uncertainties in the laminar region of Nikuradse’s experiments were very high, and his conclusion regarding no roughness effects in the laminar region is open to question. In order to conclusively resolve this discrepancy, we have experimentally determined the effects of relative roughness ranging from 0–5.18% in micro and minichannels on friction factor and critical Reynolds numbers. Reynolds numbers were varied from 30 to 7000 and hydraulic diameters ranged from 198μm to 1084μm. There is indeed a roughness effect seen in the laminar region, contrary to what is reported by Nikuradse. The resulting friction factors are well predicted using a set of constricted flow parameters. In addition to higher friction factors, transition to turbulence was observed at decreasing Reynolds numbers as relative roughness increased.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3