Unsteady Laminar Flow Regimes and Mixing in T-Shaped Micromixers

Author:

Kockmann Norbert1,Dreher Simon1,Woias Peter1

Affiliation:

1. University of Freiburg, Freiburg, Germany

Abstract

Convective micromixers create vortices in curved channel elements and allow characteristic mixing times below 1 millisecond for gaseous and liquid media. The flow regimes in the T-shaped junction of rectangular microchannels determine the mixing characteristics of the device. This contribution gives an overview about the flow regimes of symmetrical 1:1 mixing in T-shaped micromixers for Reynolds numbers from 0.01 to 1000 in the mixing channel. CFD simulations with the CFD-ACE+ code of ESI group give a detailed picture of the flow and mixing regimes in the investigated range of Reynolds numbers Re. First symmetrical vortices are formed at the entrance of the mixing channel for Re > 10. Due the symmetrical flow and the undisturbed interface between the components, the mixing quality at a distinct mixing channel length decreases with increasing Re number. At a certain Re number of about 140, the flow symmetry is disturbed, fluid from one side swaps to the opposite side and creates a double vortex within the mixing channel. For Re > 240 the flow becomes unsteady. The vortex formation at the mixing channel entrance is disturbed and a kind of wake flow establishes within the mixing channel. From 240 < Re < 500 the wake flow is periodic with a dimensionless frequency, the Strouhal number Sr of about 0.2. The Sr number is found to be the same in scaled mixer geometries. The mixing quality shows also a periodic behavior and reaches its maximum at this point. With further increasing Re number, the flow starts to become chaotic and the two components are often flowing parallel in the mixing channel leading to a decreasing mixing quality. Besides detailed CFD simulations, the periodic flow is observed in experimental studies with colored flow and stroboscopic imaging and has the same frequency. The decreasing mixing quality is also reflected in a lower selectivity of parallel, chemical test reactions for Re numbers larger than 500. With the knowledge of the flow regimes in microchannels, design criteria can be formulated for efficient mixing devices.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3