Microstructure Reconstruction for Stochastic Multiscale Material Design

Author:

Liu Yu1,Greene M. Steven2,Chen Wei2,Dikin Dmitriy A.2,Liu Wing Kam2

Affiliation:

1. University of Electronic Science and Technology of China, Chengdu, Sichuan, China

2. Northwestern University, Evanston, IL

Abstract

There are two critical components of connecting material and structural design in a multiscale design process: (1) relate material processing parameters to the microstructure that arises after mixing, and (2) stochastically characterize and subsequently reconstruct the microstructure to enable automation of material design that scales upward to the structural domain. This work proposes a data-driven framework to address both above components for two-phase materials and presents the algorithmic backbone to such a framework. In line with the two components above, a set of numerical algorithms is presented for characterization and reconstruction of two-phase materials from microscopic images: these include grayscale image binarization, point-correlation and cluster-correlation characterization, and simulated annealing algorithm for microstructure reconstruction. Another set of algorithms is proposed to connect the material processing parameters with the resulting microstructure by mapping nonlinear, nonphysical regression parameters in microstructure correlation functions to a physically based, simple regression model of key material characteristic parameters. This methodology, that relates material design variables to material structure, is crucial for stochastic multiscale design.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3