Direct NC Path Generation: From Discrete Points to Continuous Spline Paths

Author:

Liu Yu1,Xia Songtao1,Qian Xiaoping1

Affiliation:

1. Illinois Institute of Technology, Chicago, IL

Abstract

Spline paths in NC machining are advantageous over linear and circular paths due to their smoothness and compact representation, thus are highly desirable in high-speed machining where frequent change of tool position and orientation may lead to inefficient machining, tool wear and chatter. This paper presents an approach for calculating spline NC paths directly from discrete points with controlled accuracy. Part geometry is represented by discrete points via an implicit point set surface (PSS). Cutter location (CL) points are generated directly from implicit part surfaces and interpolated by B-spline curves. A computing procedure for calculating maximum scallop height is given. The procedure is general and suitable for part surfaces in various surface representations provided that the closest distance from a point to the part surface can be calculated. Our results affirm that the proposed approach can produce high-quality B-spline NC paths directly from discrete points. The resulting spline paths make it possible for directly importing discrete points into CNC machines for high-speed machining.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive spiral tool path generation for computer numerical control machining using point cloud;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-04-13

2. A Method of Generating Spiral Tool Path for Direct Three-Axis Computer Numerical Control Machining of Measured Cloud of Point;Journal of Computing and Information Science in Engineering;2019-06-13

3. Quantitative Comparison of Pocket Geometry and Pocket Decomposition to Obtain Improved Spiral Tool Path: A Novel Approach;Journal of Manufacturing Science and Engineering;2017-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3