Film Cooling From a Row of Holes Supplemented With Antivortex Holes

Author:

Dhungel Alok1,Lu Yiping1,Phillips Wynn1,Ekkad Srinath V.23,Heidmann James4

Affiliation:

1. Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803

2. Mem. ASME

3. Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060

4. Turbomachinery and Heat Transfer Branch, NASA Glenn Research Center, Cleveland, OH 44135-3191

Abstract

The primary focus of this paper is to study the film cooling performance for a row of cylindrical holes each supplemented with two symmetrical antivortex holes, which branch out from the main holes. The antivortex design was originally developed at NASA-Glenn Research Center by James Heidmann, coauthor of this paper. This “antivortex” design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The hole design is intended to counteract the detrimental vorticity associated with standard circular cross-section film cooling holes. The geometry and orientation of the antivortex holes greatly affect the cooling performance downstream, which is thoroughly investigated. By performing experiments at a single mainstream Reynolds number of 9683 based on the freestream velocity and film hole diameter at four different coolant-to-mainstream blowing ratios of 0.5, 1, 1.5, and 2 and using the transient IR thermography technique, detailed film cooling effectiveness and heat transfer coefficients are obtained simultaneously from a single test. When the antivortex holes are nearer the primary film cooling holes and are developing from the base of the primary holes, better film cooling is accomplished as compared to other antivortex hole orientations. When the antivortex holes are laid back in the upstream region, film cooling diminishes considerably. Although an enhancement in heat transfer coefficient is seen in cases with high film cooling effectiveness, the overall heat flux ratio as compared to standard cylindrical holes is much lower. Thus cases with antivortex holes placed near the main holes certainly show promising results.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3