Numerical Characterization of Viscous Heat Dissipation Rate in Oscillatory Air Flow

Author:

Jalil S. M.1

Affiliation:

1. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824; Department of Mechanical Engineering, University of Anbar, Ramadi, Anbar 31001, Iraq

Abstract

Abstract The effect of viscous heat dissipation (VHD) in raising the temperature field of incompressible oscillatory air flow is studied numerically. A threshold is established for when the viscous heat dissipation term in the thermal energy equation changes or does not change the temperature field for the case of oscillatory air flow in a tube connecting two reservoirs. This new criterion has not been specified clearly in earlier oscillatory flow research. According to the defined threshold and when VHD is important, the effect of dissipative bulk heating can be described by a proposed correlation in terms of Womersley number (Wo) and axial tidal displacement (ΔZ) of the oscillatory fluid. These results are determined using two-dimensional (2D) numerical simulations of laminar oscillatory air flow (Pr = 0.7) for different adiabatic unconductive tube-reservoirs' systems configurations over a wide range of oscillatory frequencies and tidal displacements. It is found that the low amount of fluid kinetic energy, which is converted into internal energy, is not sufficient to significantly heat up the fluid at a low rate of the viscous work. Therefore, the effect of viscous heat dissipation in oscillatory air flow can be ignored only below a specific limit of unsteadiness depending on Womersley number and axial tidal displacement. Also, the results showed that the VHD becomes more significant with increasing (Wo) and (ΔZ).

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3