Scale and Pose-Invariant Feature Quality Inspection for Freeform Geometries in Additive Manufacturing

Author:

Jin Yu1,Pierson Harry1,Liao Haitao1

Affiliation:

1. Department of Industrial Engineering, University of Arkansas, Fayetteville, AR 72701

Abstract

Abstract Additive manufacturing (AM) has the unprecedented ability to create customized, complex, and nonparametric geometry, and it has made this ability accessible to individuals outside of traditional production environments. Geometric inspection technology, however, has yet to adapt to take full advantage of AM’s abilities. Coordinate measuring machines are accurate, but they are also slow, expensive to operate, and inaccessible to many AM users. On the other hand, 3D-scanners provide fast, high-density measurements, but there is a lack of feature-based analysis techniques for point cloud data. There exists a need for developing fast, feature-based geometric inspection techniques that can be implemented by users without specialized training in inspection according to geometric dimensioning and tolerancing conventions. This research proposes a new scale- and pose-invariant quality inspection method based on a novel location-orientation-shape (LOS) distribution derived from point cloud data. The key technique of the new method is to describe the shape and pose of key features via kernel density estimation and detect nonconformities based on statistical divergence. Numerical examples are provided and tests on physical AM builds are conducted to validate the method. The results show that the proposed inspection scheme is able to identify form, position, and orientation defects. The results also demonstrate how datum features can be incorporated into point cloud inspection, that datum features can be complex, nonparametric surfaces, and how the specification of datums can be more intuitive and meaningful, particularly for users without special training.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference54 articles.

1. Brackett, D., Ashcroft, I., and Hague, R., 2011, “Topology Optimization for Additive Manufacturing,” Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, Vol. 1, S, pp. 348–362.

2. Additive Manufacturing of Custom Orthoses and Prostheses—A Review;Jin;Procedia CIRP,2015

3. 3D Bioprinting of Tissues and Organs;Murphy;Nat. Biotechnol.,2014

4. Geometric Dimensioning and Tolerancing Handbook: Applications, Analysis & Measurement

5. Accuracy in Dental Surgical Guide Fabrication Using Different 3-D Printing Techniques;Juneja;Addit. Manuf.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3