Affiliation:
1. University of California, Los Angeles Department of Mechanical and Aerospace Engineering, , 46-147F Engineering IV Building, 420 Westwood Plaza, Los Angeles, CA 90095
Abstract
Abstract
A large-range-of-motion compliant transmission mechanism is introduced that uses the screw degrees-of-freedom (DOF) of a multi-DOF compliant module, sandwiched between two other single-DOF compliant modules, to convert a rotational input to a collinear translational output and vice versa. The geometric advantages (i.e., transmission ratios) of the mechanism when driven with a rotation to a translation or with a translation to a rotation can be tuned as desired. The freedom and constraint topologies (FACT) approach is used to design the mechanism, and stiffness matrices are used to explain why the transmission ratio of the mechanism is different depending on whether the mechanism is driven with its rotational or translational inputs. A version of the mechanism is fabricated and its transmission ratio is measured to be ∼1.36 mm/deg when the mechanism is driven with a rotation, and is measured to be the inverse of ∼1.89 mm/deg when the mechanism is driven with a translation. The transmission ratios both remain impressively constant over the mechanism’s full range of motion and only vary slightly when they are actuated in different directions (i.e., counterclockwise or clockwise if the mechanism is driven with a rotation, or pushing or pulling if the mechanism is driven with a translation).
Funder
Air Force Office of Scientific Research
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献