A Unified Finite Element Approach for the Study of Postyielding Deformation Behavior of Formable Sheet Materials

Author:

Duan Xinjian1,Jain Mukesh2,Metzger Don. R.2,Wilkinson David S.1

Affiliation:

1. Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, Canada

2. Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, Canada

Abstract

Deformation and fracture behavior of several formable automotive aluminum alloys and steels have been assessed experimentally at room temperature through standard uniaxial tension, plane strain tension, and hemispherical dome tests. These materials exhibit the same deformation sequence: normally uniform elongation followed by diffuse necking, then localized necking in the form of crossed intense-shear bands, and finally fracture. The difference among these alloys lies primarily with respect to the point at which damage (i.e., voiding) starts. Damage develops earlier in the steel samples, although in all cases very little damage is observed prior to the onset of shear instability. A unified finite element model has been developed to reproduce this characteristic deformation sequence. Instability is triggered by the introduction of microstructural inhomogeneities rather than through the commonly utilized Gurson-Tvergaard-Needleman damage model. The predicted specimen shape change, shear band characteristics, distribution of strain, and the fracture modes for steels and aluminum alloys are all in good agreement with the experimental observations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3