The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow (Data Bank Contribution)

Author:

Martinuzzi R.1,Tropea C.1

Affiliation:

1. Lehrstuhl fu¨r Stro¨mungsmechanik, Universita¨t Erlangen-Nu¨rnberg, D-8520 Erlangen, Germany

Abstract

The flow field around surface-mounted, prismatic obstacles with different spanwise dimensions was investigated using the crystal violet, oil-film and laser-sheet visualization techniques as well as by static pressure measurements. The aim of this study is to highlight the fundamental differences between nominally two-dimensional and fully three-dimensional obstacle flows. All experiments were performed in a fully developed channel flow. The Reynolds number, based on the height of the channel, lay between 8 × 104 and 1.2 × 105. Results show that the middle region of the wake is nominally two-dimensional for width-to-height ratios (W/H) greater than 6. The separated region in front of wider obstacles is characterized by the appearance of a quasi-regular distribution of saddle and nodal points on the forward face of the obstacles. These three-dimensional effects are considered to be inherent to such separating flows with stagnation.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 430 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3