Additive Manufacturing of Pressure Vessels (With Plating)

Author:

McNelly Brendan P.1,Hooks Richard L.1,Setzler William R.1,Hughes Craig S.1

Affiliation:

1. Johns Hopkins University Applied Physics Laboratory, Laurel, MD

Abstract

Additive manufacturing (AM) allows for product development with light weight, fewer machining constraints, and reduced costs depending on the application. While AM is an emerging field, there is limited research on the use of AM for pressure vessels or implementation in high stress environments. Depending on the design approach and limitations of traditional material-removal fabrication techniques, AM parts can achieve high strength-to-weight ratios with reduced manufacturing efforts. Coupling AM with alternative metal and composite materials allows for unique designs that have high strength-to-weight ratios for pressure-based applications. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has conducted research on a number of these composite designs, focusing on the use of carbon fiber or metal plating with the AM materials. Before implementing AM in field tested prototypes, JHU/APL performed strength limitation tests on AM pressure vessels (PVs) in the laboratory to prove their effectiveness. PVs constructed with varying thicknesses and coating techniques were divided into three groups, each with a uniform wall thickness that provided a congruent surface area to withstand higher pressures. These PVs were then paired with one of three coating/plating technologies, forming a trade matrix of varying AM thicknesses and plating techniques. Once fabricated and plated, these test PVs were hydro-statically tested at increasing pressure levels. This pressure testing demonstrates that the use of AM to create PVs, when paired with specific plating techniques, can result in structures with significant strength capabilities at lighter than normal PV weights. Furthermore, JHU/APL has begun to test the AM PVs in a number of research projects. Such testing is desired because these unique parts can be easily manufactured in shapes and volumes that were previously unattainable through common manufacturing techniques. AM parts are now commonly used in air-frames; however, in higher pressure underwater scenarios AM’s capabilities are unproven. JHU/APL has begun to apply this new and emergent field to the effective design of AM PVs, which can play a significant role in the field of underwater vehicles and similar projects.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3