Affiliation:
1. Mitsubishi FBR Systems, Tokyo, Japan
2. Japan Atomic Energy Agency, Ibaraki, Japan
Abstract
This paper describes a new type of hysteresis model applied for seismic response analysis, which provides restoring force characteristics containing various types of hysteresis loops generated by calculating differential equations, based on static breaking tests regarding thick rubber bearings. In order to reduce residual risk, there is increasing necessity to accurately predict seismic response against both design-basis ground motion and ground motion exceeding design-basis. This process of seismic response prediction is called seismic Probabilistic Risk Assessment (PRA). In general, a restoring force of rubber bearing under large deformation due to a major earthquake has strong non-linear characteristics containing the hysteresis loops. To improve the accuracy of seismic response predictions up to the ultimate behavior in PRA, a new hysteresis model to be applicable up to the breaking point in horizontal and vertical directions is proposed by the authors. The features of the proposed hysteresis model are as follows: (1) The hysteresis characteristics obtained by the proposed model have smooth curves as substantive hysteresis loops measured in breaking tests. (2) The various types of hysteresis characteristics can be captured efficiently as initial value problems since the proposed model, consisting of differential equations, directly allows the skeleton function, and unaffected by hysteresis law such as Masing law. This paper indicates applicability of the proposed hysteresis model to seismic response analysis through comparison of results of the static breaking test with results of analytical, and also describes the breaking mode obtained by the seismic response analysis.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. PROPOSAL OF HYSTERESIS MODEL USING DIFFERENTIAL EQUATION;Journal of Structural and Construction Engineering (Transactions of AIJ);2019