Intelligent Reasoning for Gas Turbine Fault Isolation and Ambiguity Resolution

Author:

Tang Liang1,Volponi Allan J.1

Affiliation:

1. Pratt & Whitney, 400 Main Street, MS 162-15, East Hartford, CT 06108 e-mail:

Abstract

An engine health management (EHM) system typically consists of automated logic for data acquisition, parameter calculation, anomaly detection and eventually, fault identification (or isolation). Accurate fault isolation is pivotal to timely and cost-effective maintenance but is often challenging due to limited fault symptom observability and the intricacy of reasoning with heterogeneous parameters. Traditional fault isolation methods often utilize a single fault isolator (SFI) that primarily relies on gas path performance parameters. While effective for many performance-related faults, such approaches often suffer from ambiguity when two or more faults have signatures that are very similar when monitored by a rather limited number of gas path sensors. In these cases, the ambiguity often has to be resolved by experienced analysts using additional information that takes many different forms, such as various nongas path symptoms, full authority digital engine control fault codes, comparisons with the companion engine, maintenance records, and quite often, the analyst's gas turbine domain knowledge. This paper introduces an intelligent reasoner that combines the strength of an optimal, physics-based SFI and a fuzzy expert system that mimics the analytical process of human experts for ambiguity resolution. A prototype diagnostic reasoner software has been developed and evaluated using existing flight data. Significant performance improvements were observed as compared with traditional SFI results. As a generic reasoning framework, this approach can be applied not only to traditional snapshot data, but to full flight data analytics as well.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference23 articles.

1. Gas Turbine Engine Health Management: Past, Present, and Future Trends;ASME J. Eng. Gas Turbines Power,2014

2. Fault Detection and Diagnosis in Gas Turbines;ASME J. Eng. Gas Turbines Power,1991

3. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems;NASA/TM–2005-213622,2005

4. Performance-Analysis-Based Gas Turbine Diagnostics: A Review;Proc. Inst. Mech. Eng., Part A,2002

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3