Influence of PWR Primary Water on LCF Behavior of Type 304L Austenitic Stainless Steel at 300°C: Comparison With Results Obtained in Vacuum or in Air

Author:

De Baglion Laurent1,Mendez José2,Le Duff Jean-Alain1,Lefrancois André1

Affiliation:

1. AREVA NP SAS, Paris La Défense, France

2. Université de Poitiers-ENSMA, Futuroscope Chasseneuil, France

Abstract

Nowadays, it is well known that the low cycle fatigue (LCF) life of austenitic stainless steels can be affected in specific conditions of temperature, strain rate, strain amplitude or dissolved oxygen concentration by the effect of Pressurized Water Reactor (PWR) primary coolant environment. Nevertheless, questions remain about the best methodology that must be used to consider environmental effects for nuclear power plant licensing and for operating lifetime extensions. These environmental effects are most commonly evaluated from a mean fatigue curve based on tests conducted in air at room temperature. However, it is well established that air is not a neutral environment for metallic alloys and its effect can be highly dependent on the temperature level. Thus, in order to evaluate the intrinsic fatigue resistance of a 304L austenitic stainless steel at 300°C and the importance of complex fatigue – environment interactions in air or in PWR water, LCF tests were performed in both environments and specifically designed ones were conducted in secondary vacuum. Tests were performed on 304L cylindrical specimens at 20 or 300°C in vacuum or in air and only at 300°C in PWR water, under total axial strain control using a triangular waveform at strain amplitudes of ±0.3 or ±0.6% and strain rates of 4 × 10−3, 1 × 10−4 or 1 × 10−5 s−1. It was found that compared with vacuum, air is responsible for a strong decrease in fatigue lifetime in this steel, especially at 300°C and low strain amplitude. The PWR water coolant environment is still more active than air and leads mainly to increased damage kinetics, with slight effects on initiation sites or propagation modes. More precisely, the decreased fatigue life in PWR water is essentially attributed to an enhancement of both crack initiation and “short crack” micropropagation stages. Furthermore, a detrimental influence of low strain rates on the fatigue lifetime at 300°C was observed in PWR water environment or in air, but also in vacuum without environmental effects, and was in the last case exclusively attributed to the occurrence of the dynamic strain aging (DSA) phenomenon. So, the use of data obtained in a neutral environment as a reference allows the evaluation of the intrinsic effect of each environmental or loading condition. Moreover, in an active environment such as air or PWR primary water, damage evolutions as well as fatigue lives cannot be predicted by a simple multiplication of each parameter effect taken separately because they are the result of numerous interactions. The last conclusion is supported by complementary results showing that the PWR water environment effect as well as the ground surface finish effect can be attenuated when LCF tests are performed with a more representative loading signal shape.

Publisher

American Society of Mechanical Engineers

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3