Affiliation:
1. University of Massachusetts, Amherst, MA
Abstract
The goal of this study is to evaluate and compare the thermodynamic performance of three feasible hybrid solar power tower-desalination plants for co-generation of power and fresh water. In these hybrid configurations, either multi effect desalination (MED) or thermal vapor compression (TVC)-MED unit is integrated to the Rankine cycle power block. The particular focus is on comparison between single plant and hybrid plants in terms of energy efficiency and penalty in power production to determine the more efficient configuration. The achieved results showed that integration of MED unit to the power cycle is thermodynamically more efficient, due to less reduction in power production and efficiency than the TVC-MED configurations. Also, for hybrid solar tower-MED plat, the average penalty in power production was between 9.27% and 12.88% when fresh production increased from 10000 m3/day to 31,665 m3/day. Another important finding showed the specific power consumption (specific power penalty) of the hybrid plant decreases with increasing the fresh water production. Especially at higher fresh water production, this specific power consumption was competitive to other desalination technologies such as reverse osmosis. The proposed hybrid solar tower-MED plant offers different benefits such as possibility of eliminating the cooling system requirement of the cycle as it can be replaced by the MED unit.
Publisher
American Society of Mechanical Engineers
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献