Reynolds Number Dependence, Scaling, and Dynamics of Turbulent Boundary Layers

Author:

Klewicki Joseph C.1

Affiliation:

1. Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824

Abstract

The past two decades (approximately 1990 to 2010) have witnessed an ever-quickening pace of new findings pertaining to the Reynolds number dependencies, scaling, and dynamics of turbulent boundary layer flows (and wall-bounded turbulent flows in general). Given this, an important objective of the present effort is to provide a review that enables researchers new to the field (e.g., graduate students) to gain an appreciation for, and an understanding of, the prevalent research themes currently under investigation. Thus, the emphasis is more on laying a contextual foundation rather than, for example, comprehensively reporting all of the research findings of the past 20 years. The review begins with a brief exposition of scaling concepts and the normalizing parameters used in exploring Reynolds number dependence. An overall focus of the effort is to describe the scaling problem in relation to the underlying behaviors of the governing transport equations. For this reason, a number of relevant equations are concisely presented. The technical challenges associated with reliably exploring Reynolds number dependence are nontrivial and are of central importance. Thus, a separate section is devoted to this topic. Similarly, since they factor importantly relative to understanding and organizing the data trends, the attributes, strengths, and weaknesses of the various theoretical approaches and models (both physical and mathematical) are briefly reviewed. The statistical data presented primarily focus on means and variances since these quantities most directly relate to the time-averaged equations. Recent results pertaining to the spatial structure of turbulent boundary layers provide a useful context for describing instantaneous dynamics, often involving coherent vortical motions and including the so-called inner/outer interaction. Overall, the cumulative evidence increasingly supports a paradigm in which the scaling behaviors of the statistical profiles stem from the existence of an internal hierarchy of motions that approach a dynamically self-similar state as the Reynolds number becomes large.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3