Surface Instability of Sheared Soft Tissues

Author:

Destrade M.1,Gilchrist M. D.1,Prikazchikov D. A.2,Saccomandi G.3

Affiliation:

1. School of Electrical, Electronic, and Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland

2. Department of Advanced and Applied Mathematics, The Russian State Open Technical University of Railway Transport, Chasovaya Street, Moscow 22∕2, Russia

3. Dipartimento di Ingegneria Industriale, Università degli Studi di Perugia, 06125 Perugia, Italy

Abstract

When a block made of an elastomer is subjected to a large shear, its surface remains flat. When a block of biological soft tissue is subjected to a large shear, it is likely that its surface in the plane of shear will buckle (appearance of wrinkles). One factor that distinguishes soft tissues from rubberlike solids is the presence—sometimes visible to the naked eye—of oriented collagen fiber bundles, which are stiffer than the elastin matrix into which they are embedded but are nonetheless flexible and extensible. Here we show that the simplest model of isotropic nonlinear elasticity, namely, the incompressible neo-Hookean model, suffers surface instability in shear only at tremendous amounts of shear, i.e., above 3.09, which corresponds to a 72deg angle of shear. Next we incorporate a family of parallel fibers in the model and show that the resulting solid can be either reinforced or strongly weakened with respect to surface instability, depending on the angle between the fibers and the direction of shear and depending on the ratio E∕μ between the stiffness of the fibers and that of the matrix. For this ratio we use values compatible with experimental data on soft tissues. Broadly speaking, we find that the surface becomes rapidly unstable when the shear takes place “against” the fibers and that as E∕μ increases, so does the sector of angles where early instability is expected to occur.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference23 articles.

1. Surface Instability of Rubber in Compression;Biot;Appl. Sci. Res., Sect. A

2. Surface Waves in Pre-Stressed Mooney Material;Flavin;Q. J. Mech. Appl. Math.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3