Electrode-Skin Impedance Component Estimation in the Time-Domain

Author:

Fortune Benjamin C.1,McKenzie Lachlan R.1,Chatfield Logan T.1,Pretty Christopher G.1

Affiliation:

1. University of Canterbury, Christchurch, New Zealand

Abstract

Abstract This paper presents a method to estimate the individual component values of a bipolar electrode-skin interface, with future intent of applying compensatory electrode-skin impedance balancing prior recording bio-signals with electromyography. The electrode-skin interface was stimulated by a step input and the output behaviour was characterised using a single exponential model per electrode. The method was applied to simulated circuitry, passive component circuitry and a human subject. The accuracy of the method was determined using the known values that comprised the simulated and passive component circuitry. Nine of ten simulated data sets resulted in accurate estimations, with a maximum error of 0.763% and a mean error of 0.076% per component. The method also produced successful estimates for nine of the ten physical circuitry data sets, with a maximum error of 10.2% and a mean error of 3.49% per component. The method was unsuccessful in estimating the individual electrode-skin impedance components for the human subject: this was due to the system failing to reach steady state during the stimulation period. The authors suspect a DC offset caused by the half-cell potentials associated with the electrode-skin interface were the cause of the unexpected behaviour.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrode-Skin Impedance Model Parameter Estimation in the Frequency-Domain;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3