Decentralized Informative Path Planning With Balanced Exploration-Exploitation for Swarm Robotic Search

Author:

Ghassemi Payam1,Chowdhury Souma1

Affiliation:

1. University at Buffalo, Buffalo, NY

Abstract

Abstract Swarm robotic search is concerned with searching targets in unknown environments (e.g., for search and rescue or hazard localization), using a large number of collaborating simple mobile robots. In such applications, decentralized swarm systems are touted for their task/coverage scalability, time efficiency, and fault tolerance. To guide the behavior of such swarm systems, two broad classes of approaches are available, namely nature-inspired swarm heuristics and multi-robotic search methods. However, simultaneously offering computationally-efficient scalability and fundamental insights into the exhibited behavior (instead of a black-box behavior model), remains challenging under either of these two class of approaches. In this paper, we develop an important extension of the batch Bayesian search method for application to embodied swarm systems, searching in a physical 2D space. Key contributions lie in: 1) designing an acquisition function that not only balances exploration and exploitation across the swarm, but also allows modeling knowledge extraction over trajectories; and 2) developing its distributed implementation to allow asynchronous task inference and path planning by the swarm robots. The resulting collective informative path planning approach is tested on target search case studies of varying complexity, where the target produces a spatially varying (measurable) signal. Significantly superior performance, in terms of mission completion efficiency, is observed compared to exhaustive search and random walk baselines, along with favorable performance scalability with increasing swarm size.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3