Predicting Technique of Delamination at Adhesively Bonding Joints in a Flip Chip Package During Solder Reflow Process

Author:

Ikeda Toru1,Kim Won-Keun2,Miyazaki Noriyuki1

Affiliation:

1. Kyoto University, Kyoto, Japan

2. Kyushu University, Fukuoka, Japan

Abstract

Recently, adhesively bonding techniques such as the anisotropic conductive film (ACF) or the non-conductive adhesive resin are often used for connections in the chip size packages instead of conventional solder joints due to their reasonable cost and the ease of miniaturization. Adhesively bonding techniques expected to be a key technology for the chip size packaging and the system in package. However, the level of reliability for adhesively bonding techniques is still less than that for solder joints. The quantitative evaluation techniques for the reliability of adhesively bonding techniques are desired. This paper focused on the reliability of adhesively bonding joints in a flip chip package during the solder reflow process for other solder jointed devices. This paper presents a methodology for quantitative evaluation of the delamination in a flip chip interconnected by an ACF under moisture/reflow sensitivity tests. The delamination toughnesses between components in a flip chip based on the stress intensity factors were measured by fracture tests in conjunction with the numerical analysis developed in our previous study. Moisture concentration after moisture absorption was expected by the diffusion analysis using the finite element method. Then, vapor pressure in a flip chip during the solder reflow process was estimated. Finally the delamination was predicted by comparing the stress intensity factor of an interface crack due to vapor pressure with the delamination toughness. The delaminations in an actual flip chip package during moisture/reflow sensitivity tests have successfully predicted by the present methodology.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3