Affiliation:
1. TPC, Humble, TX
2. SERGI Holding, Ache`res, France
Abstract
Oil filled transformer explosions and their prevention is a complex industrial issue. Experimental tests showed that when an electrical fault occurs in a transformer, it generates dynamic pressure waves that propagate in the oil. Reflections of these waves on the walls build up high static pressure which transformer tanks cannot withstand. The tank’s ability to withstand this pressure is thus one of the key parameters of transformer explosion prevention, and a numerical tool was developed to simulate the phenomena highlighted during the tests, especially the pressure wave propagation. The present paper’s aim is thus to complete this numerical tool so that the mechanical behavior of the tank can be accurately studied. The hydrodynamic numerical tool was subsequently coupled with a dynamic structure analysis package: the open source software Code_ASTER. A weak coupling strategy was first developed by applying the simulated pressures to the structure geometry in order to evaluate stresses and deformations. This strategy has evolved with the development of a strong coupling strategy which required establishing a moving mesh technique for the hydrodynamic code to accept displacement data from the structure code and complete the exchange between hydrodynamic and structure codes. First encouraging results are shown.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Experimental Study on Fault Process of High Energy Arch Discharge in the Oil Chamber of OLTC;2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE);2023-12-29