Flaw Evaluation for PWR and BWR Component Weld Joints Using Advanced FEA Modeling Techniques

Author:

Hayashi T.1,Hankinson S. F.2,Saito T.1,Ng C. K.2,Bamford W. H.2

Affiliation:

1. Toshiba Corporation, Yokohama, Kanagawa, Japan

2. Westinghouse Electric Company, Madison, PA

Abstract

Primary Water Stress Corrosion Cracking (PWSCC) of Pressurized Water Reactor (PWR) primary loop piping/nozzle Dissimilar Metal Weld (DMW) joints and Inter Granular Stress Corrosion Cracking (IGSCC) of Boiling Water Reactor (BWR) weld joints is an ongoing issue in the nuclear power industry. Recent field experiences with PWSCC of various DMW joints in US plants led to the development and application of an Advanced Finite Element Analyses (AFEA) methodology that permits crack propagation with a natural flaw shape. Crack growth and fracture evaluations for both PWR and BWR components are generally performed based on a conservative, idealized crack shape model, e.g. semi-ellipse, rectangle, etc., depending on the geometry of the crack and the component. Conventional evaluation methodologies and/or assumptions of this kind, in some cases may provide excessive conservatisms. The use of natural flaw shape development with crack propagation might provide a more realistic assessment of crack growth and structural integrity. The prime purpose of this study is to demonstrate the conservatism/margins in the conventional “idealized crack shape” methodology. A comparison study of crack growth behavior between the applications of the idealized and natural crack shape methodologies has been performed in order to assess the level of conservatism/margins in the conventional crack growth evaluation methodology and the possible impacts on the structural integrity evaluation for both PWR and BWR components. Comparison studies on the impacts of the differences in crack growth law and loading condition used for crack growth evaluations have been performed as well.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3