Fine-Scale Simulation of Sandstone Acidizing

Author:

Li Chunlou1,Xie Tao1,Pournik Maysam1,Zhu Ding1,Hill A. D.1

Affiliation:

1. Department of Petroleum Engineering, The University of Texas at Austin, 1 University Station, MC C0300, Austin, TX 78712

Abstract

We have developed a fine-scale model of the sandstone core acid flooding process by solving acid and mineral balance equations for a fully three-dimensional flow field that changed as acidizing proceeded. The initial porosity and mineralogy field could be generated in a correlated manner in three dimensions; thus, a laminated sandstone could be simulated. The model has been used to simulate sandstone acidizing coreflood conditions, with a 1in.diam by 2in. long core represented by 8000 grid blocks, each having different initial properties. Results from this model show that the presence of small-scale heterogeneities in a sandstone has a dramatic impact on the acidizing process. Flow field heterogeneities cause acid to penetrate much farther into the formation than would occur if the rock were homogeneous, as is assumed by standard models. When the porosity was randomly distributed (sampled from a normal distribution), the acid penetrated up to twice as fast as in the homogeneous case. When the porosity field is highly correlated in the axial direction, which represents a laminated structure, acid penetrates very rapidly into the matrix along the high-permeability streaks, reaching the end of the simulated core as much as 17 times faster than for a homogeneous case.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3