Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
Author:
Crawford R. Paul1, Rosenberg William S.1, Keaveny Tony M.2
Affiliation:
1. Department of Neurological Surgery, University of California, San Francisco, CA 94143 2. Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA 94720-1740
Abstract
This study investigated the numerical convergence characteristics of specimen-specific “voxel-based” finite element models of 14 excised human cadaveric lumbar vertebral bodies (age: 37–87; M=6, F=8) that were generated automatically from clinical-type CT scans. With eventual clinical applications in mind, the ability of the model stiffness to predict the experimentally measured compressive fracture strength of the vertebral bodies was also assessed. The stiffness of “low”-resolution models (3×3×3 mm element size) was on average only 4% greater p=0.03 than for “high”-resolution models (1×1×1.5 mm) despite interspecimen variations that varied over four-fold. Damage predictions using low- vs high-resolution models were significantly different p=0.01 at loads corresponding to an overall strain of 0.5%. Both the high r2=0.94 and low r2=0.92 resolution model stiffness values were highly correlated with the experimentally measured ultimate strength values. Because vertebral stiffness variations in the population are much greater than those that arise from differences in voxel size, these results indicate that imaging resolution is not critical in cross-sectional studies of this parameter. However, longitudinal studies that seek to track more subtle changes in stiffness over time should account for the small but highly significant effects of voxel size. These results also demonstrate that an automated voxel-based finite element modeling technique may provide an excellent noninvasive assessment of vertebral strength.
Publisher
ASME International
Subject
Physiology (medical),Biomedical Engineering
Reference33 articles.
1. Genant, H. K., Engelke, K., Fuerst, T., Glu¨er, C. C., Grampp, S., Harris, S. T., Jergas, M., Lang, T., Lu, Y., Majumdar, S., Mathur, A., and Takada, M., 1996, “Noninvasive Assessment of Bone Mineral and Structure: State of the Art,” J. Bone Miner. Res., 11, pp. 707–730. 2. Faulkner, K. G., Cann, C. E., and Hasegawa, B. H., 1991, “Effect of Bone Distribution on Vertebral Strength: Assessment With a Patient-Specific Nonlinear Finite Element Analysis,” Radiology, 179, pp. 669–674. 3. Martin, H., Werner, J., Andresen, R., Schober, H. C., and Schmitz, K. P., 1998, “Noninvasive Assessment of Stiffness and Failure Load of Human Vertebrae From CT-Data,” Biomed. Tech., 43, pp. 82–88. 4. Homminga, J., Weinans, H., Gowin, W., Felsenberg, D., and Huiskes, R., 2001, “Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture but Not the Vertebral Load Distribution,” Spine, 26, pp. 1555–1561. 5. Silva, M. J., Keaveny, T. M., and Hayes, W. C., 1998, “Computed Tomography-Based Finite Element Analysis Predicts Failure Loads and Fracture Patterns for Vertebral Sections,” J. Orthop. Res., 16, pp. 300–308.
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|