Stationary Response of MDOF Dissipated Hamiltonian Systems to Poisson White Noises

Author:

Wu Y.1,Zhu W. Q.1

Affiliation:

1. Department of Mechanics, State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, P.R.C.

Abstract

The stationary response of multi-degree-of-freedom dissipated Hamiltonian systems to random pulse trains is studied. The random pulse trains are modeled as Poisson white noises. The approximate stationary probability density function and mean-square value for the response of MDOF dissipated Hamiltonian systems to Poisson white noises are obtained by solving the fourth-order generalized Fokker–Planck–Kolmogorov equation using perturbation approach. As examples, two nonlinear stiffness coupled oscillators under external and parametric Poisson white noise excitations, respectively, are investigated. The validity of the proposed approach is confirmed by using the results obtained from Monte Carlo simulation. It is shown that the non-Gaussian behavior depends on the product of the mean arrival rate of the impulses and the relaxation time of the oscillator.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3