Biofuel Emulsifier Using High-Velocity Impinging Flows and Singularities in Microchannels

Author:

Belkadi A.1,Montillet A.2,Bellettre J.3

Affiliation:

1. LTeN, UMR CNRS 6607, Universite de Nantes, 1 rue Christian Pauc, BP 50609, Nantes 44300, France

2. GEPEA, UMR CNRS EMN ONIRIS 6144, Universite de Nantes, 37 bd de l'Université, Saint-Nazaire 44600, France

3. LTeN, UMR CNRS 6607, Universite de Nantes, 1 rue Christian Pauc, BP 50609, Nantes 44300, France e-mail:

Abstract

The objective of this experimental work is to design an original microfluidic mixer for continuous emulsification of small fractions of water in a lipid phase. This system is aimed to be integrated on-line in the process so as to avoid the use of a surfactant. The currently targeted application is a better combustion of water-supplemented alternative biofuels in boilers, turbines, or internal combustion engines in general. Therefore, mean size of droplets of water in the emulsion should be 5–10 μm, and the water content should not exceed ∼20%. Microsystems developed in this work are designed so as to enhance different flow perturbations that are favorable for the emulsification process. The microchannels for the fluids admittance have different sections: 300 × 300 μm2 and 600 × 600 μm2. As a consequence, an impinging flow is developed at the crossing of the inlet microchannels of the two phases which has for effect a significant stretching of the fluids. Then, depending on the continuous phase, Rayleigh instabilities can be developed in the straight parts of the outlet channels (600 × 600 μm2) and/or the enhancement of fluid splitting is obtained; thanks to a singularity (bend) located in the same outlet channels. Two different continuous phases are tested (gasoil and sun flower oil) for which the flow rate is about (65–100 ml/min). The water fraction is varied in the range 7–24%. It is shown that the length of the outlet microchannels is a crucial parameter. Considering an oil phase with low viscosity, such as gasoil, a too long channel can promote coalescence. On the opposite, longer outlet channels are needed with more viscous fluids (like sunflower oil) in order to develop Rayleigh instabilities which is, in this case, the more efficient way to obtain emulsions in this kind of microsystem. On a general point of view, concerning the size of the water droplets, dispersion of water is much more efficient with this microsystem using gasoil rather than vegetable oil as the continuous phase. Considering the targeted application, emulsions with an average size of water droplets of about 10 μm were obtained with gasoil as the continuous phase.

Funder

Centre National de la Recherche Scientifique

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3