A Novel Solar Cell Shallow Emitter Formation Process by Ion-Implantation and Dopant Modulation Through Surface Chemical Etching

Author:

Yang Wei-Lin1,Chen Po-Hung1,Wu Kun-Rui1,Wang Likarn1

Affiliation:

1. Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300, Taiwan e-mail:

Abstract

Ion-implantation is an advanced technology to inject dopants for shallow junction formation. Due to the ion-induced sputtering effect at low implant energy where dopants tend to accumulate at the silicon surface, the excess ion doses can be easily removed via a surface chemical wet etching process. By taking advantage of the dose limitation characteristic, we proposed a novel method to form shallow emitters with various dopant densities. Two integration flows have been investigated: (1) wet etch after implantation before junction anneal and (2) wet etch after implantation and junction anneal. The two integration flows observed a difference in the density of doping impurities during the thermal process, which is related to the substrate recombination rates. Selective emitter (SE) structures with the two types of integration flows were characterized. Comparing the blanket emitter and SE structures with two types of etching methods, the device with wet etch before annealing process achieved the best effective carrier lifetime of 53.05 μs, which leads to a higher short circuit current density. Hence, this SE cell demonstrated a better blue response and shows an improvement in the conversion efficiency.

Funder

"Ministry of Science and Technology, Taiwan"

National Tsing Hua University

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3