Spray-Formed, Metal-Foam Heat Exchangers for High Temperature Applications

Author:

Jazi H. R. Salimi1,Mostaghimi J.2,Chandra S.2,Pershin L.2,Coyle T.2

Affiliation:

1. Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Centre for Advanced Coating Technologies, University of Toronto, Toronto, M5S 3G8, Canada

2. Centre for Advanced Coating Technologies, University of Toronto, Toronto, M5S 3G8, Canada

Abstract

Open pore metal foams make efficient heat exchanger because of their high thermal conductivity and low permeability. This study describes a novel method of using wire-arc spraying to deposit Inconel 625 skins on the surface of sheets of 10 and 20 pores per linear inch nickel foam. The skins adhere strongly to the foam struts, giving high heat-transfer rates. Tests were done to determine the hydraulic and thermal characteristics of the heat exchangers and correlations developed to calculate Fanning friction factor and Nusselt number as a function of Reynolds number for airflow through the foam. Measured heat-transfer coefficients for the foam heat exchangers are greater than those of straight flow channels at the same flow rate. A ceramic thermal barrier coating was deposited on one face of the heat exchanger using plasma spraying. The coating and heat exchanger survived prolonged exposure to the flame of a methane-air burner.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3