Time-Dependent Fracture and Defect Assessment of Welded Structures at High Temperature

Author:

Xuan Fu-Zhen1,Tu Shan-Tung1,Wang Zhengdong1

Affiliation:

1. School of Mechanical Engineering, East China University of Science and Technology, Mail Box 402, 130 Meilong Street, Shanghai 200237, P.R.C.

Abstract

The present work reports several new insights into creep crack growth performance and defect assessment of welded structures at elevated temperature. First of all, an equivalent homogeneous model based on the limit load analysis is proposed to reflect the mismatch effects of the base and weld metals, the geometrical dimension of weldment constituents and the location of the pre-existing defects. Secondly, using the proposed equivalent homogeneous model, an estimation methodology for the time-dependent fracture mechanics parameter C* is developed in conjunction with the reference stress (RS) method and the GE/EPRI scheme. Such an estimation method was validated by using nonlinear finite element analysis of 48 compact tension (CT) specimens with various degrees of mismatch in creep behavior and different width of the welding seam. After that, the applicability of C* measurement recommended in ASTM E 1457 is re-examined for the CT specimen with a mismatched cross-weld. From the limit load analysis, a series of modifications for experimental C* estimation equation from ASTM E 1457 is introduced based on the proposed equivalent homogeneous model. Finally, a failure assessment diagram (FAD)-based method is presented for the welded structures at high temperatures. The application of such an approach to a welded cylinder with an internal circumference crack under axial tension is also reported in this paper.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3