Tailoring Plate Thickness of a Helmholtz Resonator for Improved Sound Attenuation

Author:

Kurdi Mohammad1,Nudehi Shahin2,Duncan Gregory Scott2

Affiliation:

1. Power Transmission Division, Lufkin Industries, LLC, Part of GE Oil and Gas, Wellsville, NY 14895

2. Mechanical Engineering Department, Valparaiso University, Valparaiso, IN 46383 e-mail:

Abstract

In this work, the transmission loss of a Helmholtz resonator is maximized (optimized) by allowing the resonator end plate thickness to vary for two cases: (1) a nonoptimized baseline resonator and (2) a resonator with a uniform flexible endplate that was previously optimized for transmission loss and resonator size. To accomplish this, receptance coupling techniques were used to couple a finite element model of a varying thickness resonator end plate to a mass-spring-damper model of the vibrating air mass in the resonator. Sequential quadratic programming was employed to complete a gradient-based optimization search. By allowing the end plate thickness to vary, the transmission loss of the nonoptimized baseline resonator was improved significantly, 28%. However, the transmission loss of the previously optimized resonator for transmission loss and resonator size showed minimal improvement.

Publisher

ASME International

Subject

General Engineering

Reference15 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3