Drilling CFRP Laminates by Dual-Axis Grinding Wheel System With Copper/Diamond Functionally Graded Grinding Wheel

Author:

Kunimine Takahiro12,Tsuge Hideaki3,Ogawa Daisuke3,Yamada Motoko4,Sato Hisashi4,Watanabe Yoshimi4

Affiliation:

1. Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;

2. Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan e-mails:

3. Industrial Research Institute of Gifu Prefecture, Oze 1288, Seki 501-3265, Japan

4. Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

Abstract

This study aims to investigate the drilling performance of a copper/diamond functionally graded grinding wheel (FGGW) fabricated by centrifugal sintered-casting for carbon fiber-reinforced plastic (CFRP) laminates by originally designed dual-axis grinding wheel (DAGW) system. The copper/diamond FGGW was also originally designed and fabricated by the centrifugal sintered-casting to suppress abrasive-grain wear and reduce the consumption of abrasive grains in our previous study. Drilling tests were carried out over 50 holes in dry machining. Thrust force was evaluated with force sensor during drilling test. Hole diameter, roundness, and roughness were measured to assess hole quality. Drill chips were observed by scanning electron microscope (SEM) to investigate chip morphology. Precision drilling without burring and delamination was achieved in CFRP laminates. Good hole-quality was still obtained over 50 holes due to the low thrust force during drilling. Specific three-dimensional (3D) drilling process of the DAGW system enabled stable and precision drilling with low thrust force in CFRP laminates continuously.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3