Determination of Dynamic Drainage Volume in Water-Flood Operations Based on Fluid Flow Velocity Field Delineation

Author:

Zhao Xiang1,Qian Qihao2,Shi Chengfang2,Wang John Yilin3

Affiliation:

1. EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802

2. Research Institute of Petroleum Exploration and Development, Beijing 100083, China

3. Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802

Abstract

Abstract Dynamic drainage volume is a useful measure in evaluating well completions, well spacing, and water-flood operations. It is usually approximated with a two-dimensional circle or a three-dimensional (3D) box that encloses a well using empirical correlations and production/injection volumes. While this approximation may be convenient, it certainly is not a good estimation for the effective and dynamic drainage volume, which is key for improved recovery. This paper proposes a new method to compute dynamic drainage volumes based on reservoir simulation results. A 3D fluid flow velocity field is first generated and then visualized as a function of time. Through velocity thresholding, one can delineate flow regions, and accurately and parsimoniously determine well drainage in water-flood operations. Our new method was proven to be more efficient and practical as demonstrated in a field-based synthetic model with nine injectors and 16 producers formed as an inverted five-spot water-flood pattern commonly used in the field, and a benchmark SPE 9 model. The novelty of the method lies in that a 3D fluid velocity field is generated to determine dynamic drainage volume. Our new method could be applied to optimize well placement and improve well operation, and finally increase the production in a heuristic, instructive, and cost-effective manner to maximize the estimated ultimate recovery.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3