Detection of Neutrons Emitted From Reactor Primary Circuit Water by Discontinuing Flow Method

Author:

Viererbl L.1,Kolros A.1,Vinš M.1,Klupák V.1

Affiliation:

1. Research Centre Řež Ltd., Husinec-130, Řež 250 68, Czech Republic

Abstract

Abstract On-line activity measurement of fission products in a primary circuit water is often used for a fuel failure detection in research and power nuclear reactors. When gamma spectrometry is used for the activity measurement, high signal from 16N radionuclide and other activation products make the detection of fission products difficult. The detection of delayed neutrons emitted from several fission products is also used; however, if the detector is placed near the outlet coolant pipe, the signal from the delayed neutrons cannot be distinguished from the neutrons emitted due to 17N decay and deuterium photofission, with exception of a reactor scram condition. In this paper, a method of discontinuing the flow of primary circuit water is described. This method is based on the water flowing through a bypass on the outlet pipe to the sampling container and the flow is periodically temporarily interrupted, e.g., using 200 s + 200 s cycles. Neutrons located in the vicinity of the sampling container are continuously detected with a measuring sampling time of less than 2 s. The signal part, corresponding to the delayed neutrons, is evaluated by the signal decay analyzing during the flow interruption. The main sources of delayed neutrons suitable for this method are 137I, 87Br, and 88Br radionuclides with half-lives of 24.5 s, 55.7 s, and 16.5 s, respectively. The method was theoretically analyzed and experimentally verified in the LVR-15 research reactor.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference10 articles.

1. In-Situ Measurement of Fission Product Plateout in in-Pile Gas Loop Using Portable Ge(Li) Gamma-Ray Spectrometer;J. Nucl. Sci. Technol.,1980

2. Detection of Damaged Fuel Assembly in LVR-15 Reactor With Spectrometric Water Activity Measurement,2004

3. Sensitivity of Fuel Failure Detection by the Delayed Neutron Measurement in the Primary Cooling Circuit of HANARO;Ann. Nucl. Energy,2006

4. Fuel-Failure Detection System for Pakistan Research Reactor -1;Ann. Nucl. Energy,1997

5. Uranium Contamination in Primary Circuit of the LVR-15 Reactor,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3