A Device to Control Implant and Bone-Cement Temperatures in Cemented Arthroplasty

Author:

Completo A.1,Coutinho M.1,Schiller M.1,Ramos A.1,Relvas C.1,Simões J. A.1

Affiliation:

1. Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

At present, most of the orthopaedic implants used in articular reconstruction are fixed to host bone using acrylic bone-cement. Bone-cement polymerization leads to an exothermic reaction with heat release and consequent temperature rise. The increase of temperature in the bone beyond the tolerated limits can develop osteocyte thermal necrosis and ultimately lead to bone resorption at the cement-bone interface, with subsequent loosening of the implant. Another issue that plays an important role in implant loosening is debonding of the cement from the implant initiated by crack formation at the interfacial voids. It is well established that low porosity enables better fatigue cement properties. Moderate preheating of the implant is expected to reverse the direction of polymerization, and has the ability to reduce interfacial void formation and improve interfacial shear strength. To increase the implant temperature at the initial cementing phase in order to reduce interfacial void formation, and subsequently, cool the implant in the latter cement polymerization phase to prevent the possibility of bone thermal necrosis, a new automated electronic device was designed to be use in cemented joint replacements. The developed device was specifically designed for the knee arthroplasty, namely for tibial-tray cementing. The device controls the heat flux direction between the tibial-tray and the atmosphere through the “Peltier effect,” using Peltier tablets. The device is placed on the tibial-tray during the cementing phase and starts to heat it in a first phase, promoting the polymerization that initiates at the warmer cement-implant interface. In a second phase, the heat flux in the Peltier tablets is inverted to extract the heat generated during cement polymerization. The device efficiency was evaluated by cementing several tibial-trays in bovine fresh bone and measuring the tray and cement temperatures. The temperature results in the implant and in the cement showed that the device increases and maintains the implant temperature above room temperature at the initial cementing phase, while in the subsequent phase it cools the tibial-tray and cement. Significant differences were found for peak cement temperatures between the tests performed with and without the device. The device showed its capacity to promote the beginning of cement polymerization at the implant interface contributing towards improving interfacial shear strength and in reducing the peak cement temperature in the subsequent polymerization process, thus contributing to the prevention of the bone thermal necrosis effect.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference18 articles.

1. Thermally Induced Bone Necrosis in Rabbits. Relation to Implant Failure in Humans;Berman;Clin. Orthop.

2. Heat and Bone Tissue. An Experimental Investigation of the Thermal Properties of Bone and Threshold Levels for Thermal Injury;Lundskog;Scand. J. Plast. Reconstr. Surg.

3. Temperature Threshold Levels for Heat-Induced Bone Tissue Injury: A Vital-Microscopic Study in the Rabbit;Eriksson;J. Prosthet. Dent.

4. The Initiation of Failure in Cemented Femoral Components of Hip Arthroplasties;Jasty;J. Bone Joint Surg. Br.

5. The Effects of Cement–Stem Debonding in THA on the Long-Term Failure Probability of Cement;Verdonschot;J. Biomech.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3