Controllable Solar Flux Heating for Freeze Recovery in Molten Salt Parabolic Trough Collectors

Author:

Imponenti Luca12,Shininger Ryan3,Gawlik Keith3,Price Hank3,Zhu Guangdong4

Affiliation:

1. National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80111;

2. Solar Dynamics LLC, 1105 W. 11th Court., Broomfield, CO 80020

3. Solar Dynamics LLC, 1105 W. 11th Court, Broomfield, CO 80020

4. National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80111

Abstract

Abstract In molten-salt parabolic trough plants, the melting process is particularly important for freeze recovery of salt that is solidified in a collector loop, should such an event occur. Currently impedance heating is expected for freeze recovery of the collector loops, but this method can be expensive. A lower-cost alternative is proposed to use controllable concentrated solar flux directly from the parabolic mirrors to thaw salt that is frozen in the collector. A computational fluid dynamics model was developed to explore the solidification and melting processes of molten salt in a parabolic trough receiver and to assess the viability of this concept. Results indicate that concentrated solar heating has the potential to melt frozen salt in 5.6 h, compared to that in 8.8 h for a 300 W m−1 impedance heating system. At the same time, controllable solar flux heating introduces nonuniform solar fluxes on the receiver surface, which can induce significant thermal stress on the receiver tube. A preliminary stress analysis indicates that the temperature difference across the receiver tube should be maintained below about 70 °C for heating up to 300 °C at internal pressures ≤10 bar. At these conditions, freeze recovery using solar flux heating will not significantly affect receiver lifetime. These results suggest that controllable solar flux heating could effectively supplement or replace impedance heating in the freeze recovery system. Incorporating this methodology in future parabolic trough concentrating solar power plants is an opportunity for capital and operational cost-savings.

Funder

National Renewable Energy Laboratory

U.S. Department of Energy

Office of Energy Efficiency and Renewable Energy

Solar Energy Technologies Office

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3