Experimental Investigation of Corona Wind Heat Transfer Enhancement With a Heated Horizontal Flat Plate

Author:

Owsenek B. L.1,Seyed-Yagoobi J.1,Page R. H.1

Affiliation:

1. Drying Research Center, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

Corona wind enhancement of free convection was investigated with the needle-plate geometry in air. High voltage was applied to a needle suspended above a heated plate, and heat transfer coefficients were computed by measuring the plate surface temperature distribution with an infrared camera. Local heat transfer coefficients greater than 65 W/m2 K were measured, an enhancement of more than 25:1 over natural convection. The enhancement extended over a significant area, often reaching beyond the 30 cm measurement radius. At high power levels, Joule heating significantly reduced the effective impingement point heat transfer coefficient. The corona wind was found to be more efficient with positive potential than with negative. The heat transfer efficiency was optimized with respect to electrode height and applied voltage. The needle-plate heat transfer effectiveness improved rapidly with increasing height, and became relatively insensitive to height above a threshold value of about 5 cm.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3